
-Al?? 211 SEARCH ALGORITHMS AND THEIR INPLENENTATION(U) DUKE tlY Inm
DURHAM NC DEPT OF COMPUTER SCIENCE D N LOVELAND
29 RUG 86 AFOSR-TR-87-6237 AFOSR-81-B221

UCLASSIFIED F/G 12/2 UL

IIIIIIIIIIII f

4

UIw IIII L

hu 5 111111.4 11111 ____6_

VYCROCOPY RESOLUTION TEST CHART

O - "O - - * . "O 'O 0 S 0 0 0. • • O .. :-0•@ , ,. "

Kw;7 %ir
v. %

- WWWW

:.S "CA 0% 3

r~i~f ciq AD-A 177 311
SO C CI. U CA 10 a r - ". %0 13 O.SrmI9.j~iO% &VA.LASILiTY Of NEPOPT

OICAMe'ATO#.OmN APre f* r PUb1 t. 0reoees.e

PIBtdSI OAGZS. U*.P.AI0 REMA 111~ 0 .1*%T0~t ORGANIZATIOt4 REPORT NLISERcSi

as %A109 OP of PObi%#N#G 0OmO1ANIZATr40% P C SPNLU dtAt f~tT or""fRNGOU~~&TI 0t
Duke University lit'C SYMBOLe I a M $MNTPN fL~ZT

CompterScince epatmet IAir Force Office of Scientific Research

a. &00^1&9 (ilyS. sls a"zip Code 76. &OIna fCt. Sba mad Zip Cede,

Durham, NC 27706 Air Force System Command
Boiling Air Force Base

_______________________________ Washington,_D.C. 20332
ft 0111101 of Pufto.NG4APONSONING OPPICE SYMBOL S. PNOCUgNN? INETRUMEN? IDENTIFICATION NUMIE 0

ORGANIZATIO#. of' Grnt AFOSR-8-0221, AFOSR-83-0205

ft &VVA IOO I Cev. Slow MR4d ZIP Cf. go SOURCE OF PLMOiNO NOB

PROGRAM VNPOJICI ?ASK WORK UNIT
SLIWT Mto NO. NtO.

Search Algorithms and Their Implementationi U \L) Fz~ .2BC01 k
Donald W. Loveland

1341 VVYPS OF 4IPOR? 13 Y.A COER90i 14 OAT& Of RE PORT I r. POP_, On S PA ON

Final Scientif i*h6/1 , /8 1986, Aug. 29
16 SuP'LIINTARV NCTATIOt4

*17 COSA? I 500, It SUICl T11114 #Cenmw eaw mm Ws.UWtead Aa ft~ bieMmOambe''Final Scientific Report

1S AVOTmACy ICOat~ 0 OmmW efw a 6Wa0- Uft 66w naCm0@

Research performed under grants AFOSR-81-0221 and AFOSR-83-0205 is summarized.I
The focus was on search algorithms and their implementation; the research
spanned topics from studies of niinimax search trees to searching f or test-and-

* treatment decision trees of low cost. Among our more important contributions

are methods for use of expectation to correct speech input, the embedding of

associative networks in massively parallel computers, and algorithms for
computing rule strenghts in certain rule-based expert system architectures.
Eleven projects receiving support from these grants are siummarized.

rl LL __ __ _ __2__ _ __ _

NO OISTUiGu OTON/A VAIL&,A LIT WOO LAd*ACT 21. ASTRACT BCUN IT'. Ci6ASS.PCAT6O01

led~ 32 VNLSIIII'1IfIUSWSRP 3IUNA$ ME OP UBEPONSIOS INDgVOW.AL 22D TILE"114 u~elfl;::', 224 OPPiCS1 SYMS1OL

DO FORM 1473,983 APR 60sTION OP I JAN 73 IS O&SOLIVI
2&CVQITW CLASSIPICAYION Of T-45 PAGI

- - -5 -r - -- -

a V

SEARCH ALGORIMTHIS AND THEIR alPLEMEAKWT 8 7- 0 287

Donald W. Loveland .i trj> .c* 1Or.2~ao.

Department of Computer Science
Duke University

Durham, N.C. 27706

-0S1

29 August 1986 .

1,.54

Final Scientific Report
Grants AFOSR-81-0221, AFOSR-83-0205

Distribution Statement

Prepared for
Air Force Office of Scientific Research

Boiling Air Force Base
Washington, DC 20332

. . 27 049
0;

Table of Contents

Abstract 2

Introduction 2

Summaries

The correction of il-formed input3

Associative networks3

Signature tables 3

Errors that learning machines make4

Knowledge evaluation 4

4 Graduate Course Advisor '4

Critical sets 5

Expert systems: computing rule weights 5

Search strategies for minimax trees 9

Search with limited resources 11

Searching for near-optimal treatment procedures 12

Boolean 'Vector Machine 19

Supported Personnel 20

Publications and Theses 21

Papers in Preparation 23

*Conference Presentations 24

Acceio,- For

NTIS CRAMl
DTIC TABQ
U-,annojrced E
Justification

By

Di At ibu.tioni

Availabiltty Codes

Dit Avail ardlor cp

2

Abetract. Research performed under grants AFOSR-81-0221 and AFOSR-83-0205 is summarized. The
focus was on search algorithms and their implementation; the research spanned topics from studies of
minimax search trees to searching for test-and-treatment decision trees of low cost. Among our more
important contributions are methods for use of expectation to correct speech input, the embedding of
associative networks in massively parallel computers, and algorithms for computing rule strengths in cer-
tain rule-based expert system architectures. Eleven projects receiving support from these grants are sum-
marized.

Introduction
This is the final report for Grants AFOSR-81-0221 and AFOSR-83-0205, from June 1981 to June

1986. The grants, entitled "Search Algorithms and their Implementation", supported general and wide-
ranging studies in search methodologies and applications. The resulting research indeed covered many
aspects of search, from the classical artificial intelligence studies of minimax tree search to searching for
test-and-treatment decision trees of low cost, and included search with very limited resources, searches for
learnable functions in a full function space, and search for "critical sets" (boundary sets) of monotonic
boolean set functions. Other studies include expert systems, where the searching was over rule sets. With
the exception of building an expert system for the learning experience our research in expert systems
focussed on research topics more associated with search than usual for expert systems. We studied aiding
the expert in his search for negative consequences when a new rule is added to a rule-based system, and
the question of automating the assignment of certainty values in a rule-based inference network. Research
in natural language understanding led to use of expectation in speech understanding and a method for
effectively embedding semantic nets in a massively parallel computer.

Much was accomplished over a range of research subtopics within the search methodology and
implementation framework. We present summaries of the individual studies on the following pages.
After each summary title we list the supported investigators for that project. Non-supported personnel,
often major contributors, often participated in projects. A primary example is Gary Jackoway, the major
contributor to the work on associative networks, who was supported by Hewlett-Packard.

To highlight work that we think is particularly important we mention the use of expectation to
correct speech input, the embedding of associative networks in a parallel architecture, and the algorithms
for computing rule strengths in certain rule-based expert systems architectures. The critical set algorithm
already has found one application outside its original use and may prove to be of general importance.
The work in non-minimax search procedures should be of great interest to people studying search theory.
We are excited about what has been learned regarding representation capability of learning machines and
feel that this should influence the approach to designing learning machines as well as our expectations for
such machines. Developing an integrated theory, including practical algorithms, that tells us how to select
low-cost procedures to detect and treat defective objects when they are immersed in a otherwise function-
ing environment is clearly important and we have made initial progress on this difficult problem. We
have developed a deep understanding of some of the complex structure of this problem and work will con-
tinue that will utilize this knowledge in more general cases than completed to date.

The order of presentation, largely arbitrary, is grouped by subtopic. Some of the projects that have
not had reports or theses completed to date have extensive entries in this report, with the largest entry
the study of test-and-treatment procedures because of its importance and our delay in completing the
basic technical report on approximate solutions. (The report was slated for completion this summer, and
will be completed by the year's end.) Also, several reports have been completed on this subject. They
deal with the dynamic programming solution to the problem, in terms of parallel computation methods
and a quickly computed subcase. The major report is to help readers of this summary report understand
the structure and complexities of the test-and-treatment problem.

Eleven papers have already appeared or are accepted for publication with one other already submit-
ted. Three other papers are in active preparation and should be submitted to journals by the end of the
year. Two Ph.D. dissertations and a Masters' thesis have been written with a third Ph.D. dissertation
close to conclusion. A number of conference presentations have been given on topics supported by these
grants. Although it is hard to measure the ultimate direct value of this research to the Air Force, one

A 3

immediate contribution is a Ph.D. (D. Mutchler) who now works at the adjacent Naval Research Labs in
Washington.

It is with gratitude for the Air Force support of this basic research that we submit our final scientific
report.

The correction of U-formed input using hlstory-based expectation with applications to
speech understanding (Fink, Biermann).

A method for correction of ill-formed input was developed that acquires dialogue patterns in typical
usage and uses these patterns to predict new inputs. Error correction is done by strongly biasing parsing
toward expected meanings unless clear evidence from the input shows the current sentence is not

Nexpected. A dialogue acquisition and tracking algorithm was developed and its performance was studied
in an implementation of a voice interactive system. A series of tests were made to show the power of the
error correction methodology when stereotypic dialogue occurs.

Associative networks on a massively parallel computer (Biermann, Wagner).

Many natural language projects in the past fifteen years have used semantic networks as their
underlying knowledge representation. In a separate realm recent breakthroughs in very large scale
integration (VLSI) have led to designs for machines with vast numbers of processors. In this work we

0 1 were able to marry these two technologies. A generalization of semantic networks, called an associative
network, was mapped onto a massively parallel processor which is currently under development. The
results show:

The time required to process a query is dependent strictly on the pattern of the query, not on the

size of the classes being processed. A system built using this knowledge representation will give con-
sistent semantic processing performance.

%. The order of processing a query does not affect the speed. Thus there is no need for heuristics and
%.._ monitors to determine the most efficient way to process a query.

Although we do not receive anywhere near an n-fold speedup by using n processors, we still receive
-. *. significant performance benefits over a single processor.

The associative network may be used not just as a semantic network; for example, it also allows
some problems involving numerical minimizations to be solved efficiently.

The primary result of this work is that a large number of simple processors, each responsible for a
small piece of information, can work in unison to answer queries significantly faster than a single, highly
complex processor can. The work is reported in G. Jackoway's A.M. thesis and a paper by Jackoway is
under revision in preparation for submission to publication.

Signature table systems and learning (Biermann).

A characterization theorem was developed for the classes of functions which are represented by sig-
nature table systems. The usefulness of the theorem was demonstrated in the analysis and synthesis of
such systems. The limitations on the power of these systems come from the restrictions on the table
alphabet sizes, and a technique was found for evaluating these limitations. A practical learning system
was proposed and analyzed in terms of the theoretical model. Then an improved method was developed
and studied in a series of experiments.

A. ~~ ~ A ~~*A A A A * N A - ~ N~. 1 A A

4

% On the errors that learning machines will make (Biermann, Gilbert, Fahmy).
A learning model will be discussed where binary function f of p binary variables zxz 2,....z, is to be

-' learned from example input-output behaviors. At each time t = 1,2,3,..., the learning machine receives a
sample input-output pair for the target function and guesses what that target function is.

Most learning machines are capable of guessing (or learning) only L functions where L is less than
the set of all possible functions 22'. There are advantages to having L large: more functions can be
learned, and in general, when the target function is not precisely learnable there will be a learnable func-
tion not too distant from that target function. Thus the learning machine will be able to choose a func-
tion which agrees with the target function on most inputs even though it will be in error on some inputs.
There are also advantages to having L small if the problems with error are not too severe: learning can
occur much more quickly if there are fewer learnable functions to choose from. This paper is concerned

- 'with a number of different learning machines, their associated values for L and the nature of the trade-off
between having large L and little expected error versus having small L and short expected learning time.

For example, the signature table learning model of Arthur Samuel was studied. A characterization
of the claw of learnable functions was found which gives insight into how the mechanism works and what
types of functions it can acquire. The characterization specifies the form that certain matrices of function
values must have in order for the function to be realized. This leads to a methodology for computing L

4v and estimating the expected error that signature table systems will have in attempting to learn a ran-
domly selected target function from the set of all possible functions.

Other learning models have similarly been studied such as the linear evaluation systems, the
Boolean conjunctive normal form learning methodology of Valiant, and "truncation machines" which sim-
ply memorize the outputs with the assumption that they are determined by a specified subset of the
inputs.

The L learnable functions for a given machine may be widely spread across the space of all possible
functions so that every possible function is near, using Hamming distance as a measure, some learnable
function. They may also be very poorly scattered so that some possible target functions are very far from

., any learnable function. In order to gather information regarding the quality of these learnable function
distributions, a new learning machine was invented, the "G-machine", which spreads its learnable
behaviors in a near optimal fashion. The G-machine thus can learn with very low expected error for a

4, given value of L and serves as a standard for comparison with other learning machines. The general
result in some simulations was that most learning machines achieved expected errors which were surpris-
ingly close to the best known values.

4.,

Knowledge evaluation (Loveland, Valtorta).
In August 1983 we presented a paper at IJCAI-83 in Karlesruhe on the type of subject matter we

mean by "knowledge evaluation" within the expert system domain. The paper "Detecting ambiguity: an
example of knowledge evaluation" developed an aid for testing the compatibility of a new rule added to a
rule base for an expert system of the classification type. (Classification expert systems include many of
those doing diagnosis, such as MYCIN.) When a new rule is added, a great deal of testing is sometimes

. necessary to determine the compatability of the new rule with the rest of the knowledge base. (Note that
in expert systems it is not reasonable to prove the compatibility of the rule base because the problem does
not have clear formal specifications. If it did there would probably be little use for an expert system.)
The method proposed reduced greatly the number of input vectors needed to test for compatibility.

Graduate Course Adviser (Valtorta, Loveland).
,, The Graduate Course Adviser (GCA) is an expert system to advise graduate students regarding

course selection, built as a learning tool to help us understand the techniques and problems of developing
expert systems. It is a rule-based system, initially patterned after MYCIN (see [11), which has evolved
into a multi-stage system using algorithms and tables as well as rules. Although our main research in

5

expert systems lies elsewhere, lessons learned in the design of GCA have led to two "invited" papers to be
given in workshops on knowledge-based systems ([21,131). We received volunteer help from Bruce Smith, a
Ph.D. candidate at the University of North Carolina, and from Tim Harrison, a Duke graduate student.

Because our work in knowledge evaluation has been viewed as "too theoretical" by some practition-
ers in the knowledge-based systems field, we have felt it wise to establish our credentials by gaining some
experience as practitioners. Most important, of course, is the actual experience itself, helping us to judge
what will be needed in future knowledge-based systems.

[1]. Shortliffe, E.H. MYCIN: Computer-based Medical Consultationa. Amer. Elsevier, New York, 1976.
[2]. Valtorta, M. Knowledge refinement in rule bases for expert systems: an application-drivenl

approach. First Int'l Workshop on Expert Database Systems, Kiawah bland, SC, Oct. 1984.
[3] Valtorta, M., B. Smith and D.W. Loveland. The Graduate Course Adviser: a multiphase rule-based

expert system. IEEE Workshop on Principles of Knowledge-Based Systems. Denver, Dec. 1984.

Critical sets (Loveland, Lanskron).

Our previous work on knowledge evaluation led to the discovery of a useful algorithm that surpris-
ingly does not seem to have appeared in the literature. This was ascertained not only by a brief literature
search but by asking those in the field most likel- to know. Although none knew of any previous
occurrence of the algorithm in the literature, all expressed surprise that it seemed not to be there. Several
even contributed interesting approaches to the problem, including the referee of our first submission in
this regard. With these new ideas in hand we discovered that there were several approaches to the prob-
lem, and that our original discovery appeared to remain the most attractive but there were close runner-
up algorithms. Overall, the clarity of the algorithms was greatly improved by this second go-around. The
paper, Finding Critical Sets, is approved for publication in the Journal of Algorithms.

A critical set is defined in terms of a binary monotone set function, that is, a function f defined
over all subsets of a universe U taking only values 0 and I and satisfying f (S)=0 if f (T)==0 and
S C T. Aset S is criticaliff f (T) =1 for all T such that S C T and f(R) 0 for allR such

* that R C S. Upper bounds on the worst case times for the algorithms, determined by the number of
calls to the binary set function, vary downwards from 2r r,12 a 1 function calls. Here n is the size of U
and r is the size of the critical set found. We find that the conceptually easiest algorithm is not the easi-
est to program and also that the algorithms with better upper bounds fare more poorly in practice, based
on a small sample of random trials. Although finding one critical set is easy we also show that it can
quickly get very difficult to find additional critical sets, simply because it can be hard to separate known
critical sets from further possible critical sets.

The initial application occurred in a proposed method for aiding the expert to reduce the number of
tests needed to check induced ambiguities when a new inference rule was introduced into a clamification-
type rule-based system. (The application was reported in the paper Detecting ambiguities; an example of

*-knowledge evaluation given at the 1983 International Joint Conference of AI.) Since then a new application
. of critical sets has been found by Mr. Valtorta in work on computing attenuations. The bottom line is

that the critical set algorithms are likely to be useful in a number of settings.

Expert systems: computing rule weights (Valtorta, Loveland).
For several years we have had an interest in an area we call knowledge evaluation which is concerned4.'with finding ways of assisting the user in maintaining and judging the quality of a knowledge base,

presumably a large knowledge base in existence for a number of years. One question we became interestedin along this line is determining or adjusting rule weights automatically, so as to make a rule-based sys-

tem more accurately perform its task. We call these the syniLeswi and refinement problems, respectively.
Although the ultimate ideal is to have the system learn the entire rule space from tests (examples) it is a

- - -" .- -

6

much more modest endeavor to have the rule weight (the "degree of validity or worth" of the rule) esta-
blished by testing on known cases. It is a natural intermediate step because experts may well know a par-
ticular rule-of-thumb but be very unsure how much weight to give the rule outcome in interaction with
the other rules of the system. In particular, correlations between rules are very hard to judge; for exam-
ple, a rule may seem very much worth adding in isolation but in fact nearly be covered by other rules
already in the system.
i Our approach to this study is different than that of usual learning algorithms. We also are interested
in algorithms that would allow us to compute directly the strengths of the rules, which we call ettcna-
tion8 because the strength of the inference made by the rule is attenuated (reduced) by the amount
specified. The class of attenuations that we have considered in our models is that of multiplicative
weights. (A weight of I would mean no attenuation.) That is, we wish to understand how difficult it is,
and find algorithms where appropriate, to use the information from a block of tests in any fashion, not
just incrementally, to determine rule strength weights, or attenuations. Perhaps surprisingly, we find that
such determinations can be easy in certain cases, although in many cases it is provably difficult almost

S".certainly (i.e., NP-Hard) to compute such attenuations.

The knowledge-based systems that we consider operate by chaining rules together. For most of our
studies a rule has the form IF (PI & P2 & ... & Pn) THEN C WITH ATTENUATION a, where P1,
P2,...,Pn, and C are weighted propositions and a is a real number between 0 and I inclusive. By weiphted
proposition we mean a statement, possibly true or false, with a weight, called a certainty factor (CF), that
reports the degree of belief that the associated proposition is true. CF's have values between 0 and 1,
inclusive. A combinstor is a function from a vector of CF's to a CF that assigns a single number to the
conjunction P1 & P2 &..A PN of premises Pi of the rule. The most used function here is the MIN func-
tion. For our purpose, we multiply the combinator output by the attenuation value A to determine the

* CF associated with the conclusion C of the rule. Many rules may have the same conclusion; their collec-
tive input is merged by an interator function which defines the CF value associated with weighted propo-
sition C in the rule system. One function that is often used as an integrator is MAX, although others are
frequently used. We have obtained some results for knowledge-based systems in which probsaiistic addi-
tion is used in place of MIAX Probabilistic addition maps two positive integers x and y between 0 and 1
into x + (l-x)y.

Although the simple if...then rule form we use here is very common and will suffice for the present
-. discussion, we note that we have considered variations to it. In particular, some results we mention later

consider the role played by predicate functions. A predicate function takes the CF of a weighted proposi-
tion in the premise of a rule and returns a CF for that same proposition. (An example is a function that
maps CF values less than a threshold to 0 and leaves other values unchanged.)

We found it convenient to represent knowledge-based systems as graphs, called inference nets, com-
posed of basic building biocks that represent a single rule. A typical basic subgraph representing a rule

. N
• ./."j

,4.:. ,

7

with three weighted propositions in its premise is shown below:

A

where the oval, circle, and square repr ent an integrator, an attenuator, and a combinator, respectively.
For example, the knowledge-bamed system composed of the two rules IF P1 & P2 THEN P5 WITH
ATTENUATION I and IF P3 & P4 THEN P5 WITH ATTENUATION &2 would be represented as

' abown below.

C1 C2

I 1 12 1

Tbe certainty factors of weighted propositions P1, P2, P3, and P4 flow from the input lines il, i2, i3, and
i4 through combinators C1 and C2, atkeuators Al and A2, and integrator II. The output of integtor Ii
is the certainty factor of weighted proposition P5.

Inference nets realize functions fom vectors of CF's to vectors of OF's; a point in the graph is called
a test. In the example above, the input vectors have cardinality 4, while the output vector consists of a
single CF.

We assume that the inference net to be built is completely specified, except for the values of the
attenuators. The designer of the knowledge-based system must determine or adjust (if estimates of the
values are given) these values. We consider two ways in which the designer can learn the values- We call
the first model of learning the ceomplete case and the second model the incomplete case. In the complete
case, all tests are available; in the incomplete case, only a limited collection of tests is available.

"A 'J
8

In the complete case, we postulate the existence of a perfect ezpert, i.e., an oracle that outputs the
output part of a test, when given the input part of a test. For example, the perfect expert would be able
to correctly diagnose whatever description of a patient were to be presented to it. The patient description

*is an assignment of certainty factors to a predetermined set of patient descriptors (weighted propositions),
while the diagnosis is an assignment of certainty factors associated with a predetermined set of possible
diseases (also weighted propositions). (For inference nets that are trees, this set would include only one
disease.)

>2. The results that we have obtained for the complete case can be summarized as follows:
(a) It appears easy to synthesize attenuations for trees with MIN for OR nodes, MAX for AND nodes

and multiplicative attenuations. In particular, it is easy for real attenuations and real certainty fac-
tors, within the usual rounding errors introduced by computer multiplication.

(b) It is NP-Hard to synthesize attenuations for trees with MIN, MAX and multiplicative attenuations
when the predicate functions are allowed to perform "sign flipping" of the certainty factors. (This is
performed in MYCIN by the predicate function THOUGHTNOT.)

* (c) It is NP-Hard to synthesize internal attenuations for acelic graph using MIN, MAX and multiplica-
tive attenuations.

- (d) It is easy to synthesize input attenuations for the same model as in (c).

(e) It is NP-Hard to synthesize attenuations for ehains using MIN, MAX and some choices of attenua-
tions that are not closed under composition.

.% (f) Similar results hold for probabilistic addition in place of MAX. In particular, it is easy to synthesize
attenuations for trees with real multiplicative attenuations.

The results that we have obtained for the incomplete test case can be summarized as follows:
(a) Synthesis of attenuations is NP-Hard even for trees with MEN, MAX, multiplicative attenuations,

bounded fan-in to the MIN's, and fixed depth of the tree. Note that this models well some typical
rule-based expert systems: bounded number of premises to each rule (indcpendent of the size of the
rule base) and short inference chains, also independent of the size of the rule base. In particular, if
determining attenuations is hard for this highly constrained model, then finding certainty factors for
expert systems using MIN and MAX surely is hard, if done from test cases. We have proved that it
is NP-Hard to determine attenuations in this restricted setting.

(b) As above, with probabilistic addition in place of MAX.

(c) Approximate attenuation synthesis. It is NP-Hard to synthesize attenuations which are within less
than 50% (of the allowable range of attenuations) away from the correct ones.

(d) Heuristic algorithms. We have tried to exploit the concept of influential input for the MIN/MAX
case with multiplicative attenuations. In this case, the output of the inference net is always equal to
the attenuated value of one of the inputs. We have proved that the problem of setting attenuations
remains NP-Hard for trees even when an influential input is specified for each test. We have
noticed, however, that it is simple to synthesize attenuations if the tests are augmented to contain
the certainty factors of intermediate hypothesis.

(e) Refinement from almost exact attenuations. We consider a family of trees as in (a), with estimates
for all attenuations. We assume that the estimates are closer to the correct attenuations than a con-
stant. This refinement problem is NP-Hard for any positive value of this constant, however small.
This work is contained in the doctoral dissertation of Marco Valtorta, which is nearing completion.

*1 Although Mr. Valtorta is now fully employed elsewhere, we hope for essential completion during a current
leave of absence and completion of the thesis itself by the end of this calendar year.

el,

, ..-. ,,,. ,,,-,-...-.-..,....... -.,, ,,,,. . , - . , .,- .. , -.- ,....-,...,,:,,

9

V,,9 Search strategies for minimax trees (Ballard, Reibman).

In our first work we showed how to modify the standard alpha-beta pruning stategy to deal with
minimax trees into which chance nodes have been introduced (Ballard [1,2]). In the context of this work
we defined the value of a chance node as the possibly-weighted average of its children's values. The idea
behind this definition is to select a move whose payoff has the highest possible expected value. We

.e 4showed by both empirical and closed-form analysis that our algorithm provides a considerable savings
over the "obvious" algorithm (from 30%1o to as much as an order of magnitude).

We used the standard maximum and minimum of children's values as the back-up criterion for max
and min nodes. We observe by analogy, however, that the "proper" goal for game tree search is always to
choose the move with highest expected value. This suggests that when exhaustive search is not possible
and/or our opponent is thought to be fallible, the values of even ordinary max and min nodes might
profitably be defined as a suitably weighted average. Of course, the weight assigned to the best-looking
child of a node, which in traditional analysis fully determines the parent value, will have a very high
weight assigned to it, perhaps 0.9 or more. We further observe that this variant backup criterion for max
and min nodes could just as well be applied to pure minimax trees as to the *-minimax trees we have pre-
viously studied. In fact, we maintain that the proper context in which to carry out an initial study of
variant (i.e. non-minimax) strategies is that of pure minimax trees, so that the primary question becomes
one of determining a strategy for assigning "suitable" weights to the children of a node. We note that
this goal is one of improving the performance of the search algorithms, rather than merely their cfficiency.

Based upon the observations above, we studied the probabilistic tree searching techniques with a
new emphasis on non-minimax strategies for searching minimax trees. Our overall objectives were similar
to those of previous studies (e.g. Slagle and Dixon 18]) but the model we used is as (a) degree. of depen-

* 1 dence among the values of sister nodes; (b) the relation of tatie values to the true value, of non-leaf nodes;
and (c) ways of using information about oppoaenl strate~l to increase the expected outcome. In an
attempt to make our results as widely applicable as possible, we have been especially careful to formulate
a model in which all parameters can be varied independently of the others. We expect our work to add to

' the repertoire of probabilistic techniques used in economic and military modeling, and also to respond to
various technical issues (e.g. the conditions under which search "pathology" occur) raised by Nau [6' and
Pearl (7j.

Motivation. We were interested in finding improved strategies for decision-making in the face of
incomplete information, such as that arising for large minimax trees for which exhaustive search is infeasi-

" . ble. Since most minimax trees of interest are much too large to be searched exhaustively, heuristic search
methods are required. The conventional way of operating in these situations is to (1) search as deeply as
possible, (2) appeal to a "static" evaluation function at deep nodes which are being treated as leaves, and
(3) somehow "backup" these static values toward the root of the tree. In practice, the standard minimax
rules are usually used for backup, but there is no theoretical foundation for doing so The mater is dL%-

-V cussed in various forms by Nan 16], Slagle and Dixon 18'. and Truscott 19 The problem is that the
minimax backup rules are valid only when they are being supplied with perfect information It is not
immediately clear how they function when approximations are being used

The Model. In [3] we investigate ways of outperforming minimax. We were especially wterested in
formulating a realistic model of minimax trees, and also with being able to vary the individual parameters%
of the model independently. The tree model we have begun to work with incorporates both structural
and semantic properties. The first few parameters involve the standard structural charcten1aa&&x of the
game p and portions of it being searched from move to move.

D - the depth of the initial game tree
B - the branching factor
M - the search depth of max
N - the search depth of min

The remaining parameters deal with semantic features which are much harder to deal with and which we
feel are largely understood.

4--,

~Oli

- . -- - . .-%

10

LAS - a "leaf assignment strategy" that assigns a value to each of the B**D leaves of the tree Th0'
primary problem here is to capture dependencies among values of sister nodes realistically.

STAT - a way of assigning "static" values to nodez. The problem here is to control how well the
true value of a node is predicted by its static value.

OPP - a model of the opponent. In general this might involve knowledge about his search depth.
backup criteria, and static evaluation function. Since such detailed knowledge is seldom available,
we have chosen to characterize the overall qality of the opponent's play by a composite value which
we refer to as "playing strength".

Given the model parameters above, our goal was to determine optimal backup criteria for max. In partic-
ular, we attempt to estimate for each child of a node the probability that the opponent will select it
From these probabilities we can form a weighted average of the children's value as the value to be passed
back. We refer to the new form of backup as the "s-Min" strategy. The computations of *-Mn are Simi-
lar to those for chance nodes as described in Ballard 12], but *-Min is differently motivated. One can see
that *-Min is a generalization of minimax, which assumes a probability of 1 for the move that looks best

,. to us and 0 for the rest. At the other extreme, we would characterize an opponent who makes random
moves by assigning a probability of 1/B for each node, where B is the branching factor. Furthermore, one
can show that in its simplest form, *-Min reduces to the "% and N" algorithm of Slagle and Dixon [8;,
though again the motivation is somewhat different.

- We then extended the study to the more elaborate "D-PBU" search strategy we had formulated dur-
ing the spring of 1982, which was motivated by the "product rule" methods proposed by Pearl which
have subsequently been studied by him and Nan. Collecting together aH the ideas and strategies proposed
by ourselves, as well as recent proposals of Na and Pearl and early work by Slagle and Dixon, we under-
took a comprehensive series of empirical studies of several non-minimax strategies. The principal results
of these studies are: (1) all non-minimax criteria studied yield a slight but significant improvement over
minimax; (2) strategies based upon a simple average do better than those based on products; (3) the most
likely, and in some cases the most important, opportunity to outperform minimax arises when minimax is
faced with a tie; (4) departures from minimax tend to occur in unfavorable positions; and (5) non-minimax
strategies exhibit uneven performance when pitted against one another. These results, along with a
definition of the non-minimax strategies that were considered and an account of the historical relation
among them also appear in [3:.

A study of the role of opponent error was undertaken by Reibman, and a paper written [4] giving a
model of player fallibility, and preliminary results on its expected performance.

References
[1] Baflard, B.W. A search procedure for perfect information games of chance: its formulation and

analysis. Second National Conference on Artificial Intelligence, 1982, pp. 111-114.

21 Balard, B.W. The *-minimax search procedure for trees containing chance nodes. Artificial Inteli-
fence, Oct. 1983, pp. 327-50.

[3] Ballard, B.W. Non-minimax search strategies for minimax trees: theoretical foundations and empir-
* ical studies. Conditionally accepted in Artif. Intelligence. To be merged with [4).

[4] Reibman, A., B. Ballard. Non-minimax se.%irch strategies for use against fallible opponents. Third
Nat 7 Conf on Al, Aug. 1983. Cond. accepted in Artif. Intelligence. To be merged with [3].

5) Fuller, S.H., J.G. Gaschnig, and J.J. Gillogly. An analysis of the alpha-beta pruning algorithm.
Dept. of Computer Science Report, Carnegie-Mellon University, 1973.

]6 Nau, D. Pathology on game trees: a summary of results. First National Conference on Artificial
Intelligence, 1980, pp. 102-104.

(7 Pearl, J. Game-searching theory: survey of recent results. SIGART Newsletter No. 80, 1982, pp.

70-75.

" !8 Slagle, JR and J.K. Dixon. Experiments with the N & N tree-searching program. Comm. ACM 1$
(1970), 3, pp. 147-152.

-:.'.

[9] Truscott, TR. Minimum variance tree searching. First Int. Symposium on Policy Analysais and
Information Systems, 1979, pp. 203-209.

Search with limited resources (Mutchler, Loveland).

We summarize the problem(s) we have labeled "search with limited resources". The following ques-
tions provide motivation for studying search with limited resources:

Where can search resources beat be expended to gain "useful" information?
How should one use acquired information to gain more information?

Does knowing the limits of search resources help one search more effectively?
What algorithms are good approximations to the optimal search policy?

To investigate these questions in an analytic framework, we use the following probabilistic model.
We generate trees as Karp and Pearl 121 and others have done. That is, we consider complete binary
depth N trees. Arcs are independently assigned I or 0 with probability p and q = 1 - p respectively.
Each leaf value is the sum of the arc values on the path from the root to the leaf. Hence values of sibling
leaves are positively correlated. One argument for using the arc-sum model is that real-world search trees
often possess this correlation property.

This model features a scout who searches such trees as Karp and Pearl (2] did. The scout begins at
the root and ezpands no'ies, thereby finding the values of the two arcs below it. No node can be
expanded until its parent has been expanded. After expanding n nodes, the scout must halt and report to
the general. The general uses the scout's findings to select a leaf of the tree. The general's goal is to
minimize the expected value of the chosen leaf. The questions are: what policy should the scout use to
select nodes for his a node expansions, and how should the general choose his leaf node?

For example, suppose the scout is searching the depth 5 tree whose top two levels look as pictured
below after two node expansions. (Nodes A, B and C are the roots of unexpanded subtrees. The numbers
beside arcs indicate expanded nodes.) Let p - 0.85. Suppose the scout has resources left for only two
more node expansions. Which node should he expand first?

X

X C

A B

Or suppose the pictured tree is the situation that the (exhausted) scout reports to the general. What leaf
should the general choose?

The answer to the general's dilemma is not hard. He should choose any leaf below the frontier node
with least zero value, where the zero value of frontier node 0 is

sum of arcs on the path from the root to 0
+ (distance from 6 to a leaf below it) X p.

In the tree pictured above, the general should choose any leaf below node C, whose zero-value is 4.4.

One might then wonder whether the scout should make his decisions based on the same criterion.
The answer is both a reassuring "yes" and a surprising "no". Under the condition that n (number of
node expansions allowed) is no more than N (depth of the tree), we have shown that

12

(1) If p < .59, this "greedy policy" (expand any node with least zero-value) is optimal.

(2) For any n, if p is large enough, situations may naturally arise wherein applying the greedy policy
when a node expansions remain is not an optimal decision. The tree pictured above is one such
situation. The scout should expand either node A or node B1

We have shown that the above problem can be described as a Markov decision process [3]. The
proof of the first result is an induction that invokes the theory of branching processes [1] to prove a key
lemma.

We have also investigated a variant of this model wherein the scout expands arcs rather than nodes,
thereby learning the value of the expanded arc. We have shown how to transform this variant to a Mar-
kov decision process that is essentially the same as that for the problem described above. The analysis
proceeds similarly and yields corresponding results.

We most recently studied the question

tiwhen the greedy policy is not optimal, just kow bad is it?

The work so far suggest two conjectures for which we have proof for p < .682.
(1) The optimal decision is always more than "one away" from the greedy policy. That is, it is never

optimal to expand a node whose zero-value is neither the smallest nor next-to-smallest of the fron-
tier nodes.

N (2) For fixed p, there is an M such that if more than M node expansions remain, the greedy decision is
optimal. Hence, the difference between the greedy and optimal policies does not grow with the
number of node expansions allowed.

The results from this investigation will form the Ph.D. thesis of David Mutchler. In 1986 he will
join the Information Theory Section within the Computer Science and Systems Branch of the Naval
Research Laboratory. There he will join a small team investigating questions like those listed at the

N *., beginning of this section, in the context of both Al heuristic search and classical military search.

i1) Harris, Theodore E. The Theory of Branching Processes (Springer-Verlag, Berlin, 1963).
[2] Karp, R.M. and Pearl, J. Searching for an optimal path in a tree with random costs. Artificial

Intelligence f1 (1983), 99-116.
[3j Ross, Sheldon M. Introduction to Stochastic Dysamic Programming (Academic Press, New York,

1983).

Searching for near-optimal treatment procedures (Loveland, Lansk-on).

Introduction. There is an extensive literature in the binary testing problem, a problem featuring the
analysis of optimal and near-optimal test procedures with respect to expected cost. The solutions are
presented as decision trees. See [1] for a survey of literature on this general problem. One of the first
research papers written under this grant was a paper extending the work of Garey and Graham 12] from
the equal probability case to the arbitrary probability case [3. This went a long ways towards completing
our understanding of the binary splitting approximation algorithm for binary testing. While woring in

, this area we were struck by the fact that for computer scientists, physicians and anyone else intermted in
repairing faults as well as finding faults this was the wrong problem. In many situations one wishes not to
isolate the fault as the final solution but to treat the fault, and treatment may often occur before the fault
is isolated. Indeed, the treatment can also be in part a test: "Take two aspirin and, if not better, see me
in the morning". Surprisingly, no theory of tests and treatments parallel to the theory of binary testing
seems to appear in the literature. We outline a model for the test-and-treatment problem and present
some initial results for this model. A special case of the binary testing problem (the "complete" test case)
has a simple and quickly computed solution, the Hulman coding procedure. We had hoped that there
might be an interesting generalization of the Huffman procedure for the analogous case in the test-and-

o'r...

13

treatment problem but the rich interactions between nodes, which themselves are clusters of treatments,
seems to preclude a simple algorithm to solve this special case. We then discuss an approximation algo-
rithm for the simplest case and illustrate the node interaction that makes finding simple optimal algo-
rithms difficult. A paper presenting the full details on this material will be written in the Fall (1986).

The model. We first present the model for the binary testing problem because the model we con-
sider is an extension of this binary testing model. The binary testing problem is presented by n objects,
a a priori probabilities of fault, and m tests with associated costs. Let U = {o a .. , o*) denote the
a objects, let {P 1,P 2...., p *) denote the n a priori probabilities that report the user's estimate of the
likelihood of the corresponding object being faulty, and let {T 1 ,..., T. } denote the m binary tests
with associated costs {CI, . . . , C).

We make various assumptions to simplify the problem analytically. We assume that there is only
one faulty object, so p =-1. The assumption that tests are binary means that they are reliable and
unambiguous; in particular we can model a test by a subset of the universe. The test set is defined as fol-
lows: an object is placed in the test set if the test gives a positive response when that object is the faulty
object. We will let Ti denote the test set as well as the underlying test, because functionally they are
equivalent. Previous analytical work has usually assumed that the tests all have the same cost, chosen
arbitrarily as a unit cost; i.e., Ci =1, all i.

Although this may seem draconian, much has been learned using this restriction. This knowledge
serves as a message regarding the more general case with arbitrary costs. (See 12], [3]). We return to this
point later.

The outcome of the problem is a decision tree that instructs one as to how to apply the tests, where
the choice of test is a function of the outcome of previous tests. For any particular problem one follows a
single path of the tree, branching as determined by test outcome, until the faulty object is isolated. We
seek the tree of minimum expected cost, where expected cost is given by

EC= Palk Pi (1)

with P•ki defined as the sum of the costs of the tests encountered. In the case of uniform cost for tests
Pt- becomes the number of tests encountered.

,-" , The model for the (binary) test-and-treatment problem that we adopt here extends the binary test-
ing model by the addition of treatments {T,+4 ,...,T.+, with associated a priori probabilities
p. +,•. , p.+,) and associated costs (C.+ , C..,). Our indexing convention reserves the first

m indices for tests and the last r indices for treatments, which allow a uniform notation for both tests
and treatments. Like tests, treatments are representable by subsets of U, but of course the meaning is
quite different. If a treatment is applied then the unknown object is considered (completely) treated if it
is in the treatment set, and not treated (or otherwise altered) if it is not in the treatment set. However, in
each case the cost of the treatment is incurred. In the decision tree that represents a given test-and-
treatment (TTr) procedure there would be only one arc below a node representing a treatment, the arc

* ~ that represents the continuing path for non-treatment, i.e., when the unknown object is not in the treat-
ment set. The procedure must treat the unknown object, so every branch of the decision tree will end in
a treatment.

- Our objective is still the same, to find procedures that minimise* the expected cost. Expected cost
still is defined by formula (1) used for the binary testing problem, but the notion of path now changes to
include treatment nodes.

Figure 1 is an eample of a tea-smd-tratnent problem presentation with two TM procedures
presented. Although we believe that Procedure 2 is GiimA the amputation to establish that i
sefficiently time consuming that timality has not been proven. The decision trees have been stylised
for easier reading. Although a treatment should have only one arc below it, we have added a second arc,
with double lines, to record at the end of that arc the objects treated. Technically the objects treated
should label the treatment made itself, the convention we follow when the treatment is at the end of a
path and all objects associated with that path are treated. In general, a test or treatment labels a node,
and an object with its associated a priori probability (alternatively, its weight) labels the end of a path.
The expected cost value for each procedure is also given.

14

A Sample Test-and-Treatment Problem

Objects o 1 02 03 04 0

Probabilities .3 .3 .2 .1 .1

Tests/Treatments

*,.. ~ Name Set Cost

Tests {2,3) 1
T2 {2} 1
T{3,4) 1

Treatments T4 {1,4} 4
T{2,5) 4
To {2,3} 5
T7 {3) 2

Procedure 1 Procedure 2

.3
a

o, T7 ,

-7 . .3 .1 .2
Z\. %.*

0J 01 O9 of

-4.3 -3.6

Figure 1

Finding loto-co~t procedures. Using an appropriate dynamic programming or branch-and-bound
algorithm, one can determine a minimum cost TTr procedure (decision tree) even with arbitrary test
costs. However, such algorithms take at least m 20 steps to execute in the general case, where, as before,
n is the number of objects and m is the number of tests. This exponential growth in the number of
objects means that in practice only small problems can be solved exactly. Thus there has been a great
interest in fast algorithms that find low-cost (but not necessarily optimal) test procedures. When algo-
rithms are presented, the obvious questions are: (1) how fast is the algorithm? (2) how close to optimal
are the resulting test procedures?

To proceed we need some definitions.
A complee TTr problem has a set of tests such that each subset S of U is both a test set and a

treatment set. (For tests it actually suffices that either S or U-S be a test, by symmetry for tests.) The
complete teting pr biem is a restriction of the complete TTr problem to test sets.

A complete TTr problem (or testing problem) is an important subcase because it is assured that
whenever a test (treatment) is desired, it exists and may be used. The importance of this subcase is docu-
mented by some major properties for the binary testing procedure, which we now state. See 12] and [3]
for details and further properties.

The following hold for the binary testing problem with unit test costs.

I. There is a 0(a logo) algorithm to find the optimal test procedure for the (unit cost) complete testing

I .- , : - - : " " , '- 4 r ,

15

problem.

U. The incomplete testing problem is NP-hard. (That is, all evidence is that such problems cannot all
be solved in 0(n *) steps for any given integer k .)

M. For the incomplete testing problem the most natural fast approximation algorithm has been
evaluated regarding its speed (easily seen as 0(mn)) and its expected cost approximation to optimal. See
12; and [3].

With this background in mind, we undertook the study of the test-and-treatment problem, which as
mentioned earlier, seems to be the more correct problem statement for most real-life situations. Our origi-
nal goals were:

A. To find a fast optimal algorithm for the complete TTr problem (for a restricted cost case);

B. For the incomplete TTr problem to find a good approximation algorithm.

After considerable study on the former question we have reason to doubt the interest, perhaps even
the feasibility, c our first goal. Besides giving some quite restricted results we will demonstrate why seek-
ing an optimal solution may not be worthwhile except in the restricted case we mention. (We have to
date done limited work on the second goal; that work is beyond the scope of this summary.)

By an equiprobable 7Tr problem we mean any TTr problem where all a prori probabilities have
equal value, i.e., pi =/, where n is the number of objects in U.

We now consider briefly a dynamic programming solution to the general TTr problem. For any sub-
set S of U, we define EC (S) by

EC(S)=min{ min (CI' S I + (2)

EC(S n T.)+EC(S-T,)).

min (C. IS I+EC(S-T,))},
a <i "M +V

where IS I denotes the sum of the weights of the objects in set S, CQ denotes the cost of test or treat-
ment i, EC II =0, and any term reducing to EC(S) itself on the right is undefined. In general the
cost of computing EC (U), the desired answer, is exponential in n because there are 2' subsets that need
consideration. Our colleague Robert Wagner observed that if the partial expected cost EC(S) only

• ., depends on the cardinality of S then this minimization can be solved in 0(n 2) steps. Basically, this is
because one needs to know only EC(#S) rather than EC(S) for all smaller subsets S. (#S denotes the
cardinality of S). This special case can be realized for the equiprobable complete TTr problem with all
test costs the same and treatment costs proportional to the weight of the treatment set, for example. (See
14' for more details. A method of parallel computation of the general dynamic programming formulation
(2) for the TTr problem is presented in 15].)

Before proceeding to discuss an approximation algorithm for a special case we should note that the
". most obvious special case is not interesting. The complete TTr problem that has all treatments as well as

all tests with unit cost is clearly easy to solve: simply invoke the universal treatment (that treatment with
treatment set U) so that every object is treated by that one treatment. That gives an expected cost of 1.
Clearly, any other procedure is more costly. For uniform treatment costs other than unit cost (the cost of
each test) the answer remains the same because it costs as much to treat a subset of U as to treat all of
U.

Some experimental work has shown us that we often do quite well in an arbitrary TTr problem
(including the incomplete TTr problem case) if we choose the treatment with the lowest cost/power ratio
and invoke that treatment, and recurse on that strategyy. By power we simply mean the weight of the
treatment set. This simple rule fails if a number of treatments have nearly the same cost/power ratio.
The example in Figure 1 has all the treatments in the problem except the last with a cost/power ratio of

.

16

-6% 10; and this makes the outcome more difficult to ascertain. Treatment Ts has cost/power ratio less than
4, so by our guideline should be favored over the other treatments. Both the procedure illustrated have
Tg near the top of the decision tree, and the reader may wish to verify that placing other treatments

-before Ts yields worse procedures. The example procedure does illustrate that one may want to use tests
before invoking the most effective treatment for best expected cost.

Because the single most important determiner of value for treatments seems to be the cost/power
ratio, our special case investigations have focused first on the subcase where all treatments have the same
cost/power ratio. We hereafter denote that ratio by k. Test costs will be fixed at unit cost. Again, we
demand that all tests and treatments be present.

We have determined certain properties of optimal procedures for this special case.

Lemma 1. No non-singleton treatment appears in an optimal procedure for this subcase.

Lemma t. All tests occur prior to treatments.

We omit all proofs although the proof of Lemma 1 follows very quickly from the nature of expected
cost computations in this special subcase. Any multiobject treatment can be replaced by a sequence of
singleton treatments for the same objects with lower expected cost, which we call a caede. For exam-
ple, the single treatment given by treatment set {o, ,a) can be replaced by the cascade of Figure 2
with the expected cost then reduced.

A cascade

Figure 2

"ip We now give an approximation algorithm for a yet more restricted subase, namely, the subcase
under consideration (complete TTr problem, unit cost tests, treatments of cost kw where w is the weight
of the treatment set) plus the equiprobable requirement. We noted that for the special case the dynamic
programming method allowed computation of the optimal decision tree in O(n) steps. The approximation

- -. algorithm gives a decision tree in time essentially independent of a and k (constant time). We present a
bound on the relative error, a result that is non-trivial, requiring considerable understanding of the nature
of low-cost decision trees for this problem. We will close the paper with an attempt to illustrate why a
fast optimal algorithm (beyond the special case dynamic programming algorithm) is likely to be complex

* , and not likely to be found soon, if it exists. Also the problem of lading approximation algorithms for less
restricted classes must take these concerns into consideration.

The decision tree class to be used for this special case is a simple class. The trees have the following
properties:

a) the superleaves of the tree are all at the same level, where each superleaf is a cascade (so the posi-
tion of the superleaf locates the root of the cascade);

b) the cascades differ by at most one in the number of objects treated;

c) the level of occurrence of the superleaves is level I (the rest is level 0) where I is the least integer z
such that

k < 42.

.'

. . ";):.

17

Thus all tests, and only tests, occur above level I with nearly identically formed cascades beginning
at level I. The cost/power ratio k determines the transition level.

We shall call the class just defined the class of level I procedures. See Figure 3 for examples of level
I procedures.

An upper bound that holds for all k is given by

E"pt < 1/1 (3)

~ 'a-ECI

where ECI is the expected cost of the above mentioned decision tree and opt is the minimal expected cost
possible. Experimentation shows that for small a the approximation is actually much better than the
upper bound suggests. The actual relative error does not seem to improve with n for a fixed k, and also
varies considerably with k even for small values of k. The upper bound is as weak as it is partly because
it represents all values of k. The theorem statement below helps explain the varying relative error for
small k.

The relative error result follows from a key theorem that holds for this special case.

Tkeorem. For every a >0 and every I >0, there is a cost/power ratio value k such that the x -object
level I procedure is an optimal procedure for that value of k.

*One should note that for each i and I there is only one a -object level I decision tree modulo the
left-right orientation of branches of binary trees. The theorem states that. this tree is optimal for some k.

. -*.' We can determine some of these k values but the expression is messy. At intermediate k values the
approximation seems quite good but is hard to characterize analytically. Thus our relatively modest
upper bound.

What is at least as interesting as this upper bound is a characteristic of optimal trees that we can
hint at by example. Although there is symmetry to the problem presentation (equiprobable weights, costs

% uniform for tests and dependence only on the number of objects in treatments) the optimal tree is not
.%. necessarily fully symmetric, due to what we call "migration of objects" from cascade to cascade as k
e,- changes. Without going into the specific analysis, we demonstrate the effect in Figure 3 where we present

three decision trees for a specific TTr problem.
A6 For Figure 3 we choose a =64 and k =16, which by our formula for determining the level I,

I =min z (k < 4.22), puts 1 =2 by virtue of the equal sign; had k =16.001 then 1 =3 would be needed.
That is reflected by the same expected cost value for the level 2 tree and the level 3 tree. (The circle with
enclosed number represents the number of elements in a cascade; we chose a so that all cascades are
equally populated to remove the "excess objects" effect. The branching above the superleaves represents
tests that split the relevant sets of objects exactly in half.)

a.'.

18

Level I procedures are not always optimal

Example: =64 k =16

level 2 procedure: 16 obj/cascade

2EC 2= -L[b 64-(- (8_____
64 2 2

- 42-o4+ -(4-136)J=-(264)

level 3 procedure: 8 obj/cascade

EC 3= L [3'64+ -(8-3)fi -L(264)
64 64

level 2,3 tree:

EC2 3 3 228+ 3.36
64

16
4(+ -(45+2105))

i 156+108+45+52.51
64 !261.5:

T4 Figure 3

The third tree of Figure 3 has cascades with roots at levels 2 and 3 so in not a level I procedure.
Yet its expected cost is lower than the two level I trees. One might have expected, even boped, at the
transition value of k (viewing k as increasing) where a level 2 tree passes to a level 3 tree, that an even
splitting of each cascade from 16 members to two cascades of 8 members each would yield optimal trees.
We see by example that instead the 8-member cascades absorb an extra member and allow a 14-member
cascade which is not "big enough" to split at that k value. This is what we term "migration". This
migration can be characterised but the resulting algebra makes computation very messy and the determi-
nation of an algorithm for finding optimal trees very unpleasant, if doable, even for this simple case. It is
better to use the dynamic programming formulation in this special case if optimal trees are needed, and in
general we surely will settle for approximate solutions, even in the complete TTr problem case. (Recall
that the incomplete TTr problem is NP-hard anyway, since the simpler incomplete testing problem is
NP-h(hd.)

We now state briefly how the terms in the expected cost are computed in Figure 3. The first line in
the computation of ECQ, the expected cost for the level 2 procedure outlines the computation symboli-
cally. We do not sum the terms PaiAk "pi directly but aggregate components. First we factor out the

Nilcommon weight pit (i.e. 1/64) so we need only detemine Paik. The tests, of unit cost, cost I units for

each of the 64 objects. The cascade is composed of unit treatment costs of k/64, and there is one less

object subject to eh sequential treatment so for s objects in a cascade there are i object-treatments.

(Compare with (ka 164)-4 for single treatment for all s objects.)

We presently have a model for reasonable approximate procedures in the arbitrary weight case but
so upper bound or relative error yet. Such models may serve as well for the incomplete case. Finding

19

bounds on their relative error is another matter however.

The integrated theory of test-and-treatment procedure design is clearly of interest and it is our hope
eventually to better understand how to find, with reasonable effort, good low-cost procedures for accom-
plishing this task. We are hopeful that at least for the complete TTr we can do well for the cost structure
outlined here.

References

N 1] Payne, R.W. and DA. Pierce. Identification keys and diagnostic tables: a review. J. Royal Stat.

Soc. (Series A) 148, 253-292, 1980.

' ,, 2] Garey, M.R., Graham, R.L. Performance bounds on the splitting algorithm for binary testing. Ads.
Infor 8, 347-355, 1976.

13] Loveland, D.W. Performance bounds for binary testing with arbitrary weights. Acta Infor 22, 101-
114, 1985.

14] Wagner, RA. A polynomial time algorithm for the complete test-and-treatment decision tree prob-
lem. C.S. Report, Comp. Sci. Dept., Duke University, 1986.

[5] Duval, L.D., R.A. Wagner, Y. Han and D.W. Loveland. Finding test-and-treatment procedures
usng parallel computation. Proc. of the 1986 !I17 Conf. on Parallel Proce sin, St. Charles EL,
August, 1986.

Boolean Vector Machine (Wagner, Han).

This report covers the partial support received from the Air Force during the past three years.
The principal accomplishments during this period are represented by two papers. The first, jointly

written by the two people above, and D.W. Loveland. is to be presented in August, 1986, at the Interna-
tional Conference on Parallel Processing 111. That paper reports on a new parallel algorithm for comput-
ing optimal test and treatment decision trees. On a sufficiently large Boolean Vector Machine, the algo-
rithm promises substantial speedup over any existing sequential algorithm, for the general problem. By
the general problem, we mean the test and treatment problem given an arbitrary effective set for each test
and treatment, for which that test or treatment succeeds. In perspective, the algorithm presented there is
adequate when relatively few distinct tests and treatmeats are given. For a number of tests which is
exponential in the rsie of the objectspace, the algorithm demands too many PE's to be useful (unless we
find funds for a one billion PE machine). However, the algorithm was developed in sufficient detail to
ensure that the small per-PE memory of the BVM imposes no limitation on the algorithm, and that the
algorithm's logical correctnes, and timing analyses are both correct. The version of this paper presented
at the Parallel Processing Conference is necessarily very short. The full paper 12] has been submitted for
publication to IEEE Tramn. on Computers.

A second result, obtained very recently, also applies to the test and treatment problem, but this
time to an important special case only. An algorithie was obtained for the case in which all possible test
and treatment sets are available, and in which the a pricri probabilities that each given object be the dis-
tinguimbed object are all equal. Variants of the problem solved by this method include differences in the
cost function associated with tests 0(*), where ther re a objects in the object-space. Previously, the
best algorithm known for this ew required time (4* 1. A paper 13] describing this result has been writ-
ten, and will be submitted to a journal, probably J. ACM. after one additional revision pass.

NJn to o po e

20

As reported last year, some work was done by Wagner on the Boolean Vector Machine hardware
design. This work was needed to correct a problem in the implementation of the on-chip memory of that
design, and has proven successful. As of March 10, 1986, an 8-chip BVM system has been running at
UNC. The system contains 512 Processing Elements, and runs at 2.5 M]Hz instruction rate. A production
run of the chips it is made of has been received and tested; those chips test individually at over 4 MHz
instruction rate, and some 40% of the chips proved to be correct at that speed. The system itself would
run at 4 M]z, except for lack of funds to improve the system clock timing slightly - the clock generation
circuit assumes that the 4-phase clock for the system uses equal-duration clock phases, while the ideal
clock durations accepted by the chips varies somewhat from equal-duration. Thus, I conclude that a sys-

_ tem running at 4 MHz is actually constructable from the parts we have built, and that therefore the tim-
ing claims we have made are correct. If more funds are obtained for the purpose, we can rather easily
build a 32-chip system, running at or very close to the design-target 4 MHz instruction rate.

References

1. Duval, D., Wagner, R.A., Han. Y., and Loveland, D.W. Finding Test-and-Treatment Procedures
Using Parallel Computation. To appear in Proc. 1986 Int'. Conf. on Pr&icl Processing.

2. Duval, D., Wagner, R.A., Han, Y., and Loveland, D.W. Finding Test-and-Treatment Procedures
Using Parallel Computation. Dept. of Computer Science, Tech Report. CS-1986-5, Oct. 1985. Sub-
mitted to IEEE Trans. on Computers.

3. Wagner, R.A. A Polynomial Time Algorithm for the Complete Test-and-Treatment Decision Tree
Problem. Dept. of Computer Science, Duke University. CS-1986-24. July 1986.

Supported Personnel

A. Biermann (Co-Principal Investigator)
A. Fahmy
P. Fink (Ph.D. dissertation, 1983)
K. Gilbert
Y. Han
P. Lanzkron
D. Loveland (Principal Investigator)
D. Mutchler (Ph.D. dissertation, 1986)
A. Reibman
M. Valtorta (Ph.D. dissertation, due 1987)
R. Wagner (Co-P.I.)

Students without dissertation credit either worked as research assistants and then chose other work
for thesis work or are still not close enough to concluding a dissertation to warrant an explicit marking.

,"S

21

Publications and Theses

July, 1981 - June, 1986

Chronologically ordered

1. Biermann, A., J. Fairfield and T. Beres. Signature tables and learning. IEEE Trans. on System,

Man and Cybernetics. Oct. 1982, pp. 635-648..
2. Biermann, A. Dealing with search. Automatic Program Construction Techniqwes (Eds. Biermann,

Guiho, Kodratoff). MacMillan Publ. Co., 1984.

,. 3. Ballard, B. The *-minimax search procedure for trees containing chance nodes. Artif. Intelligence,
Oct. 1983, pp. 327-350.

4. Loveland, D. Performance bounds for binary testing with arbitrary weights. Aeta Injormatica
22(1985), pp.101-114.

*.,, 5. Ballard, B. Non-minimax search strategies for minimax trees: theoretical foundations and empirical
studies. Duke C.S. report CS-1983-13, July, 1983. (submitted for publication)

* + 6. Reibman, A., B. Ballard. Non-minimax search strategies for use against fallible opponents. Tkird
Nat't. Conf. on Artif lntel., Washington, D.C., August, 1983. Conditionally accepted in Artif.
Intelligence.

7. Fink, P. The acquisition and use of dialogue expectation in speech recognition. Ph.D. Thesis, Com-
puter Science Department, Duke University, 1983. Also C.S. Report CS-1983-101.

- 8. Jackoway, G. Associative networks on a massively parallel computer. AM. Thesis, Computer Sci-
ence Department, Duke University, 1984.

9. Ballard, b., N. Tinkham. A phrase-structured grammatical framework for transportable natural
language processors. Amer. J. Comput. Linguistics, 1985, pp. 81-96.

10. Valtorta, M. A result on the computational complexity of heuristic estimates for the A* algorithm.
Infor. Sciences, 34, 1984, pp. 47-59.

11. Biermann, A.W. Automatic programming: a tutorial on formal methodologies. Jour. of Symbolic
Comp. 1, 1985, pp. 119-142.

12. Fink, P.K., A.W. Biermann. The correction of ill-formed input using history based expectation with
applications. Computational Linguistics, 1, Jan.-Mar. 1986, pp. 13-36.

13 Loveland, D.W. Finding critical sets. Accepted in Journal of Algorithms.

14. Mutchler, D.C Search with very limited resources. Ph.D. thesis, Computer Science Dept., Duke
University, 1986.

15. Duval, L.)., R.A. Wagner, Y. Han, and D.W. Loveland. Finding Test-and-Treatment procedures
using parallel computations. Submitted to IEEE Tram. on Computing.

"2

22

Note: Bruce Ballard, while not funded by this grant this year, was funded last year, and in previr s
years on an earlier AFOSR grant.

p-'

* ..,

4-

23

Papers in Preparation

Biermann, A., K. Gilbert, A. Fahmy, B. Koster. "On the Errors that Learning Machines Will
Make," in preparation.

Loveland, D.W. and P. Lanzkron.

Wagner, R.A. A Polynomial Time Algorithm for the Complete Test-and-Treatment Decision Tree
Problem. Dept. of Computer Science, Duke University. CS-198&-24. July 1986.

At,2 *1

A'

,.%

-V ,

1

-p

24

Conference Presentations

July, 1981 - July, 1986

1. Ballard, B. A search procedure for rerfect information games of chance. Second National Conf. on
Artif. Intell. -82, Pittsburgh, Aug. 1982.

2. Loveland, D. Knowledge acquisition and evaluation. Army Conf. on Al Application to Battlefield
Info. Systems, Silver Springs, Md., April 1983.

3. Ballard, B W. and A.L. Reibman. What's wrong with minimax' 1983 Conf. on Artif. Intell.
Rochester, Mich., April 1983.

4. Reibman, A.L. and BW. Ballard. Non-minimax search strategies for use against fallible opponents.
flat ACM Southeast Region Conf., Durham, NC, April 1983.

5. Reibman, A.L. and B.W. Ballard. Non-minimax search strategies for use against fallible opponents.
Third Natl. Conf. on Artif. Intell., Washington, D.C., August, 1983.

6. Loveland, D.W. and M. Valtorta. Detecting ambiguity: an example of knowledge evaluation.
Eighth Intern. Joint Conf. on Artif. Intell., Karlsruhe, W. Germany, August, 1983.

7. Valtorta, M. A result on the computational complexity of heuristics for the A* algorithm. Eighth
Intern. Joint Conf. on Artif Intell., Karlsruhe, W. Germany, August, 1983.

8. Ballard, B. The syntax and semantics of user-defined modifiers in a transportable natural language
processor. Proc. of :he 22nd Annual Meeting of the Assoc. Comput. Linguistics, Stanfod University,
July, 1984.

9- Valtorta, M. Knowledge refinement in rule bases for expert systems: an application-driven
approach. First Intern. Workshop on Ezpert Database Systems, Kiawah Island, S.C., October, 1984.

10. Valtorta, M., B. Smith and D. W. Loveland. The Graduate Course Adviser: a multi-phase rule-
based expert system. IEEE Workshop on Principles of Knowledge-Based Systems. Denver,
December, 1984.

-, 11. Biermann, A., K.C. Gilbert, A. Fahmy and B. Koster. On the errors that learning machines will
make. Fourth Army Conf. on Applied Math. and Computing. Ithaca, May 1986.

12. Loveland, D.W. Introducing treatments into test procedures. Fourth Army Conf. on Applied Math.
and Computing, Ithaca, May 1986.

13. Duval, L.D., R.A. Wagner, Y. Han, D.W. Loveland. Finding Test-and-treatment procedures using
parallel computation. 1986 Int'l. Conf. on Parallel Proc., St. Charles, IL. August 1986.

Note: Bruce Ballard, while not funded by this grant this year. was funded last year, and in previous

years on an earlier AFOSR grant.

04

4

